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Normalization in the Spinor Strong Interaction
Theory and Strong Decay of Vector Meson V ® PP
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The meson wave function in the spinor strong interaction theory is uniquely
normalized on dimensional grounds, thus bypassing the fundamental problems
in the normalization of Klein±Gordon (KG) and Bethe±Salpeter amplitudes for
mesons. While the KG amplitude is proportional to 1/ ! E, the present meson
wave function is not and is thus flavor-independen t. The confinement term is
inactive for free mesons, but is activated when interacting with another hadron
or charged lepton. The theory is applied to the strong decay of a two-quark vector
meson into two pseudoscalar mesons V ® PP. The so-obtained and estimated
decay rates are consistent with data, as are the ratios of these rates to the
corresponding radiative decay V ® P g rates. These decay rates indicate a possible
connection of the strong quark ±quark coupling a s with the electromagneti c
coupling a via a s 5 a 1/4 5 0.2923. Contrary to the standard electroweak model
(SM), the electromagnetic and weak couplings are detached from each other in
connection with the absence of Higgs bosons, without altering the main results
of the SM.

1. INTRODUCTION

The current mainstream theories of elementary particles are quantum

chromodynamics (QCD) for strong interactions and the standard model (SM)

for electroweak interactions [1]. These theories, about 25±30 years old,

despite success in a large body of applications, have not been verified in

some basic areas, e.g., the inability of QCD to demonstrate confinement and

the absence of the Higgs boson in SM. They also incorporate a number of

ª fundamental parametersº whose values vary from case to case depending

upon how they are fixed by data. Three basic examples are the QCD effective
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coupling a s , the Cabbibo angle u c, and the Weinberg angle u w. Further, these

theories suffer when considered from an aesthetic point of view.

It has not been possible to derive from the QCD Lagrangian, which
contains quark fields, useful Lagrangians containing meson fields. Therefore,

current predictions of low-energy hadronic data are based upon phenomeno-

logical Lagrangians [2, 3]. A vast literature exists on this subject. A large class

of these are QCD-oriented, nonrenormalizable, chiral perturbation theories for

application to light mesons [3, 4]. When the meson contains a very heavy

quark, a new spin-flavor symmetry emerges from QCD and can be incorpo-
rated to apply to heavy mesons [5, 6].

Only local meson fields appear in these Lagrangians. Since mesons have

finite size and internal structure, much physical content is irretrievably lost

in such transitions to phenomenology. Undetermined parameters are intro-

duced to compensate for such loss, to take into account various types of

interaction couplings and to cancel divergences. As a result, there exists a large
number of such phenomenological Lagrangians with many free parameters to

be fixed by data. The applicability of some of these data is not self-evident

and has not been fully demonstrated.

By the standard of quantum mechanics applied to atomic physics, the

above difficulties clearly indicate that QCD and SM meet great difficulties
in some basic aspects. That in spite of this they remain the mainstream

theories is in part due to the lack of alternative theories that are as basic and

as comprehensive.

A candidate that may become such an alternative was proposed a few

years ago [7; hereafter denoted by I], developed [8], and applied to meson

spectra [9]. The theory successfully accounts for confinement, the absence
of ground-state scalar and axial vector mesons, the pseudoscalar meson

masses, apart from those used as inputs, and approximately the vector meson

masses. It further shows the nonexistence of the pseudoscalar isosinglets

[U(1) problem] and the Higgs bosons.

When applied to the weak decay of flavored pseudoscalar mesons [10;

hereafter denoted by II], the Cabbibo angle is correctly predicted. Further,
the Weinberg angle was also predicted to be 30 deg in the limit of SU(3)

flavor symmetry [11].

In this paper, physical assignments and interpretations of the formalism

developed [7±10] as well as normalization of the meson wave functions are

given. The theory is applied to the strong decay of a two-quark vector meson

into two pseudoscalar mesons V ® PP. The sister process, the radiative decay
V ® P g , is analogously treated in an accompanying paper [12; hereafter

denoted by III].

Based upon these results, it is conjectured that electromagnetic coupling

a is related to the strong coupling a s. Another independent conclusion is
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that the electromagnetic coupling a is dissociated from the weak coupling

characterized by the Fermi constant G. This, however, does not alter the

successful results of purely leptonic interactions in SM. These points are
considered in Section 9.

In Section 2, noninteracting, ground-state meson wave functions obey

linear wave equations. The nonlinear confinement term is called into action

when the meson is close to another hadron. A fundamental mesonic length

is identified. Normalization of the meson wave function amplitudes is treated

in Section 3, whereby the arbitrariness in the normalization constant in the
current literature is removed and flavor independence of the meson wave

functions is found.

Since V ® PP involves four quarks, four-quark meson wave equations

of approximative nature are constructed in Section 4 by extending the con-

struction of the two-quark meson wave equations in the Appendix, reproduced

from ref. 7. The four-quark meson wave equations have been converted into
an action and the strong decay amplitude is derived in Section 5. In Section

6, a physical picture of the decay mechanism as well as the perturbed potential

is given. The decay amplitude can be estimated explicitly if the decay products

move nonrelativistically. Such decay rates are derived in Section 7 and applied

to V ® PP in Section 8, where the limits of their validity are given. The
predictions are consistent with data and are compared to earlier work.

2. FREE AND CONFINED MESONS

The basic meson equations (A7)±(A9) are in spinor form. Dropping the

internal function j , which characterizes flavor dependence, (A7) has been

converted into vector form (I 6.4), reproduced in (III B1). For two-quark

mesons without angular excitation and at rest, these equations have been

reduced to radial equations (I 7.3), (I 7.4), (I 8.3), and (I 8.4), which have
been collected into the form of (1), (3), and (4) of ref. 9:

1 - 2

- r 2 1
2

r

-
- r

2
J(J 1 1)

r 2 1 F PJn 1 L Jn 2 c Jn(r) 5 0 (2.1a)

F PJn 5 2 F 8PJn 1 dm /r 2 F 0 2 emr 2 (2.1b)

F 8PJn 5
1

6 F # r

0

dr8 r 82 c 2
Jn(r8) 1 3r 1

r 82

r 2 1 #
`

r

dr8 r8 c 2
Jn(r8)(3r 82 1 r 2)G (2.1c)

NcJn 5 #
`

0

dr r 2 c 2
Jn(r) 5 2[ F 8PJn /r]r ® ` (2.1d)

4 L Jn 5 (EJn 2 Q2EemJ)
2 2 (mp 1 mq)

2 (2.1e)
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Here, J 5 0, 1 denotes pseudoscalar (0 2 ) and vector (1 2 ) mesons, respectively,

n the radial quantum number, c (r) is the meson wave function [see (III 3.1)]

with r [ ) x ) denoting the interquark distance, mp and mq are the masses of
quarks of flavors p and q, respectively, and dm , F 0, and em are integration

constants arising from (A9), as was mentioned below (I 7.1). E and Q are

the energy and charge, respectively, of the meson. The electromagnetic mass

Eemo 5 2.1 Mev of the 0 2 meson has been estimated from its electromagnetic

radius [9, 13, 14].

For small 0
2

meson momentum K0 or e 0 5 K0 /E00 , , 1 or (III B5),
(2.1) still holds by virtue of (III B8a). Corrections to E00 are of order e 2

0, as

can be seen from (III B1). The same can be shown to hold for 1 2 mesons.

Confinement is provided by F 8PJn, whose amplitude depends upon ) c Jn )
and thus is not fixed. This leads to the possibility of obtaining the same

eigenvalue L Jn for a continuous set of dm and F 0 values and ) c Jn ) amplitudes

or confinement strengths. Table 9 of ref. 9 gives for ground-state mesons
four cases in this set, putting em 5 0. For one of these cases, c J0 and F 8PJ0

are plotted in Fig. 1 of ref. 9.

In addition to this arbitrariness, the nonlinear F 8PJ0 in (2.1) prevents the

application of the superposition principle to the Fourier components of the

meson wave functions (III 3.1) in the laboratory space X (III A3a), so that
one cannot build wave packets from them. These two aspects also hold for

baryons, as is indicated in a comparison of (2.1) with (6.8), (6.9), (7.4), (7.5),

and (5.1) of ref. 15.

The last aspect leads to a contradiction with observation; ground-state

hadrons possess wave±particle duality properties, just like an electron does,

and their wave functions have to obey the superposition principle, at least
in a quasifree state of motion.

2.1. Free Mesons at Rest

Both difficulties of the last three paragraphs are removed by letting

) c J0 ) ® 0 when the meson moves freely and slowly and is far away from

other hadrons. This corresponds to a minimization of the confinement poten-

tial energy F 8PJ0 ® 0; (2.1a) becomes a linear eigenvalue equation and the

superposition principle can be applied to it. This linear equation together
with the normalization (3.6) and (3.7) are solved to yield

c 00 5 A0 exp( 2 dmr/2) (2.2a)

c 10 5 A1r exp( 2 dmr/4) (2.2b)

A0 5 ! d 3
m /8 p V (2.3a)

A1 5 ! d 5
m/3072 p V (2.3b)
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L J0 5 2 [dm /2(J 1 1)]2 1 F 0 (2.4)

where V can ® ` so that c J0 and F 8PJ0 ® 0 in that limit. No confinement

term is needed for free mesons, just as a hydrogen atom by itself is stable.

c 00 corresponds to the ground-state hydrogen atom wave function and c 10

to the radial part of the wave function of a hydrogen atom with unit angular

momentum, but with no angular dependence associated with it.

2.2. Mesons Close to Other Hadrons: Confined Mesons

Under interaction, the hydrogen atom can disintegrate since there is no

confining mechanism for its electron. This is no longer the case for hadrons;

the confinement terms can be called into action to prevent their disintegration.

The problem of a meson interacting with another hadron or charged lepton

has not been treated in the framework of the spinor strong interaction theory.
Therefore, only a qualitative account of such confinement is given below.

When another hadron approaches the meson, the quarks in the meson

start to experience the massless pseudoscalar or scalar forces from the quarks

in the approaching hadron, according to equations of the type of (A1) and

(A3a) and of (2.1) and (2.4a) in [15]. These forces produce a perturbation
in c J0, which originally ’ 0 and is uniformly distributed in the laboratory

space X for large V in (2.3). This perturbation causes that the resulting c J0

now has a gradient in X in the interaction region and therefore is no longer

zero, but is finite there. This in turn renders the confining potential F 8PJ0 in

(2.1c) finite and confinement becomes active in (2.1a).

This tendency is reinforced as the hadron moves closer to the meson.
But then the confining potential F 8PJ0 is no longer of the simple form of

(2.1c), but will depend upon X, since the meson wave function products on

the right of (A9) now depend upon X. Another way to see it is that the meson

wave function c J0, originally spread out in a large volume V ® ` , is pushed

back by the approaching hadron so that V is reduced to some finite volume

in the interaction region according to the reverse of (3.7b). Thus, (2.3), hence
(2.2) and F 8PJ0, become finite and confinement takes place.

2.3. Excited Mesons

The confinement term F 8PJ0 has already been in effect for radially excited

mesons represented by n . 0 in (2.1), as demonstrated in Figs. 2 and 3 of
ref. 9. The zero confinement formulas (2.4) and (2.1e) together with the

quark masses of Table 1 of ref. 9 (mu 5 0.6592 GeV, . . .) cannot predict the

masses of the radially excited p (1300) and other such mesons in Tables 5

and 7 of ref. 9. For these states, therefore, the superposition principle no
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longer holds and one cannot build wave packets for these excited states. This

may not contradict data, however, since these states have very large widths

and cannot be observed as freely moving particles. The same reasoning also

applies to the orbitally excited mesons of Tables 6 and 8 of ref. 9 because

these high-mass states also have large widths.

2.4. Fundamental Mesonic Length

It is well known that the differences of the squares of the masses of the

vector and pseudoscalar mesons are nearly the same, independent of their

quark content [16]. This fact has been used to determine the integration

constant dm in Section 10 of I from (2.4). Insertion of six pseudoscalar meson

masses into (2.1e) and (2.4) has led to a determination of the five quark

masses and the other integration constant F 0 as well as successful predictions

the remaining mesons consisting of two quarks [9] ( h and h 8 consist of six

quarks). For free mesons, (I 10.2) and the second line in Table 9 of ref. 9 give

dm 5 0.864 GeV, d 2 1
m 5 1.435 fm (2.5a)

F 0 5 2 0.24455 GeV2 (2.5b)

which are independent of flavor.

In a free meson, the quarks are confined by the dm /r term in (2.1b), just

as the electron is confined by the Coulomb potential e2/r in a hydrogen atom.

This comparison suggests that 1/dm may be identified as the fundamental

mesonic length constant or dm as the fundamental mesonic energy scale, just

as e is the fundamental charge constant in electromagnetic interactions. It

provides a reference length scale for mesonic phenomena, analogous to the

way e, together with the electron mass, controls the hydrogen atom radius,

which provides a reference length scale for atomic phenomena.

This is so because the original strong coupling constant g2
q of (A3) has

been elevated into the source term on the right side of (A9) for the confining

potential via (A5). Its place is taken by dm /r, which is proportional to the

Green’ s function of a second-order equation like (A3a), but is also an integra-

tion constant type of term in a solution (2.1b), (2.1c) to the fourth-order

potential equation (A9).

There is also a confining integration constant type of term emr 2 in (2.1b)

which is a harmonic type of potential, contrary to the linear type of potential

supported by data. It has therefore been put to zero. Likewise, the integration

constants d11 5 d13, d10 5 d30, and d1 5 d3 in the intrabaryonic potentials

(6.8) and (7.5) of ref. 15 may lead to fundamental baryonic constants.
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2.5. Meson Radii

As is seen from (2.2), the meson radii are determined by dm. With

(2.5a) and (2.2), the strong interaction radii of free pseudoscalar and vector

mesons are

r0 5 ln 2/dm ’ 1 fm, ^ r0 & 5 1/dm (2.6a)

^ r1 & 5 4/dm ’ 5.7 fm (2.6b)

where r0 is the half-width of c 2
00 and ^ r1 & refers to the maximum of c 10. It

is known that the strong interaction radius of a pseudoscalar meson is of the

same magnitude as its electromagnetic radius (see also Section 9.1), which
has been measured to be 0.6±0.7 fm for K and p [13, 14]. These values are

of the same order as r0 in (2.6a) and provide a qualitatitive support for the

present theory.

The large vector meson radius (2.6b), corresponding to that of the first

excited state of a hydrogen atom, is a unique feature of the spinor strong
interaction theory. A direct measurement of this radius will provide a crucial

test of the present theory.

The confinement term F 8PJ0 will obviously reduce the meson radii. A

numerical integration of (2.1a)±(2.1c) has been performed and the confine-

ment potential and wave functions are displayed in Figs. 1 and 2 of I. The

meson radii reported below these figures are smaller than those of (2.6), as
expected. The same kind of numerical integration has also been been carried

out for radially excited states with n 5 1 and 2 and some confinment strength.

Figures 2 and 3 of ref. 9 show that the meson radii become fairly large, of

the magnitude of 15±30 fm.

3. NORMALIZATION OF MESON WAVE FUNCTIONS

The amplitudes (2.3) are determined by a further development of the

normalization procedure of the Appendix of ref. 8 and Section 7 of II.

Following the last reference, the conventional normalization procedure for a

Klein±Gordon (KG) wave function c KG is used as a model.

3.1. Klein ± Gordon Wave Function Amplitude

Multiply the KG equation for a free particle by c *KG and subtract it from

its complex conjugate. After a rearrangement, one finds

c KG 5 AKG exp( 2 iEX 0 1 i
-

K
-

X ) (3.1a)

-
- X m 1 c KG

-
- X m c *KG 2 c.c. 2 5 0 (3.1b)

Integration of (3.1b) over X leads to
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-
- X 0 NKG 5 0, NKG 5 V A2

KG2iE, V 5 # d 3 -
X (3.2)

If the first of (3.2) is further integrated over X 0, it will have the same

dimension as the action of this KG particle and will be a dimensionless

Lorentz scalar. Therefore, NKG is also a Lorentz scalar and, for instance,
cannot depend linearly upon E, which is the time component of a four-vector.

Since there is no natural physical constraint on NKG, it is conventionally

chosen as

NKG 5 i (3.3)

so that (3.2) yields

AKG 5 1/ ! 2E V (3.4)

which is the form used throughout the literature. Since E , 0 is possible,

there is no positive norm; NKG can be any number. This arbitrariness led to

some debate during the early development of quantum mechanics. This

remains an unsettled but ignored issue to the present time.

3.2. Meson Wave Function Amplitude and Flavor Independence

Following the procedure leading to (3.1b), drop the j ’ s in (A7a) and

multiply it by x eÇ
a 5 ( x e

aÇ )*. Subtract the resulting equation from the complex

conjugate of (A8) multiplied by c c
dÇ , dropping the j ’ s there. This was carried

out earlier and led to (A2) of ref. 8 or (II 7.2):

- bÇ a
I x eÇ

a - IIeÇ f x
f
bÇ 2 - adÇ

II c c
dÇ - IbÇ c c bÇ

a 5 ( - bÇ a
I x eÇ

a)( - IIeÇ f x
f
bÇ ) 2 ( - adÇ

II c c
dÇ )( - IbÇ c c bÇ

a) (3.5)

Both terms on the right side cancel out for mesons at rest generally, as was
pointed out in (A2) and (A3) of ref. 8. Here, this can be shown by substituting

(III 3.1) with KJ , v JK 5 0, (III 3.2) with aJK 5 1 and aJK
(1) 5 0, (III 3.6),

(III A3), (2.1), and (2.2) into the right of (3.5). Substituting the same set into

the left side of (3.5) and integrating it over x and X leads to

-
- X 0 NmJ 5 0, Nmj 5 2 iEJ0 V # d 3 -

x c 2
J0(r), V 5 # d 3 -

X (3.6)

which is (A3) of ref. 8 and the analog of (3.2).

If the fisrt of (3.6) is integrated over X 0 and x0, it takes the dimension
of the action (III A4) or (5.1) below and becomes a dimensionless Lorentz

scalar. Therefore, NmJ must have dimension energy and be the time component

of a four-vector and hence differs basically from NKG. Since the only energy

constant associated with the meson is its energy EJ0, NmJ must be EJ0 times

a constant Lorentz scalar and can be put in the form
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NmJ 5 2 iEJ0 V / V c (3.7a)

where V c is interpreted as the volume in the laboratory space X occupied

by the meson wave functions which are confined by the finite amplitudes in
(2.1a), (2.1c), and (2.1d). In the limit of free mesons, these amplitudes

vanish as

V c ® V ® ` (3.7b)

The appearance of i in (3.7a) identifies it with the time component of a

four-vector.
The normalization (3.7a) is the consequence of the appearance of the

relative time x0 in a Lorentz-invariant formulation. It answers at the same

time, at least in part, the two seemingly unrelated questions raised by Wick

[17] on the Bethe±Salpeter equation, namely the lack of a positive-definite

norm and the significance of the relative time. As is shown in (3.10) below,

the gauge boson mass Mw is also fixed by a relative time scale.
The choice of i in (3.3) is not aesthetically appealing. This and the

arbitrariness of NKG are avoided by the specific fixation of (3.7a). This in

turn implies that the application of the Klein±Gordon equation with the

choice (3.3) in the literature lacks firm theoretical foundation and can lead

to erroneous conclusions. Two cases are mentioned here. Combining (3.6),
(3.7), and (2.2) leads to (2.3), which does not depend upon EJ0, contrary to

AKG in (3.4). This important difference makes possible the prediction of the

Cabbibo angle (II 11.4), which, at least in the meson sector, is not a fundamen-

tal parameter to be fixed by other data, as is the case in the standard electro-

weak model.

Further, (3.4) shows that all mesons will have different amplitudes
dependent upon their different energies and flavors. In contrast, (2.3) does

not depend upon energy, so that the meson wave function is flavor indepen-

dent. This independence converts (2.1d) to

Ncl0 5 Nc00 (3.8)

which has been employed to obtain Table 9 of ref. 9. This flavor independence

is consistent with that of dm in (2.5a). Both are required for the flavor

independence of (2.1a).

3.3. Nonrelativistic Mesons

The results of Section 3.2 were derived for mesons at rest for which

the coupled second-order equations (III B1) are decoupled and reduce to

(2.1a). For mesons in motion, KJ Þ 0 in (III 3.1) and the singlet and triplet

parts in (III B1) couple, rendering an analytic solution complicated. The
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situation is entirely analogous to that of the coupling of the small to large

Dirac wave function components by motion; the singlet (triplet) parts in (III

B1) represent large (small) components for pseudoscalar mesons and vice
versa for vector mesons.

It will be estimated below that the normalization conditions (3.6)±(3.8)

also hold to order e 0 5 K0/E00 (III B5), i.e., for nonrelativistic pseudoscalar

mesons. That (2.1) holds to this approximation has been pointed out below

it. The small triplet wave functions in (III B1) are determined by (III B8) to

order e 0. These equations are also not simply solved, but have been treated
by a dimensional analysis in the heavy meson limit E00 . . dm of (III B11).

The results are given by (III B14), and are also self-consistent to order e 2
0,

as is indicated by (III B17).

Equations (III B14) and (III B16) are inserted into (3.5). The calculation

is straightforward and will not be reproduced here. It shows that the right

side of (3.5) vanishes to order e 0. The left side receives a contribution via
E00 ® E00 1 (dm /E00) rÃK0 for the limit (III B11a), dropping the e 2

0 terms.

Here, rÃ5 x/ ) x ) . Putting dm /E00 ’ e 0 for this limit, this contribution is also

of order e 2
0 and can be dropped. Thus, (3.6)±(3.8) for J 5 0 and (2.3a) hold

to order e 0 for heavy mesons (III B11) from a dimensional analysis point of

view. A similar conclusion can be obtained by an analogous treatment for
the opposite of (B11), i.e., for light mesons. Therefore, it is estimated that

(3.6)±(3.8) also hold for meson masses between these limits, i.e., for nonrela-

tivistic pseudoscalar mesons of arbitrary mass.

3.4. Normalization in Weak Decay Processes

Under Sections 3.2 and 3.3 the integrals over the relative time x0 cancel

out in the actions (III 2.1) and (5.1) below. This is no longer the case in
weak decays, in which x0 can appear in the initial meson state, but not in

the final lepton state. This together with a more transparent handling of such

an integral over X lead to an ansatz of the type (II 3.1)±(II 3.3),

c abÇ ® c abÇ exp( 2 (x0/ t 0)
2 2

-
X 2/L2

M) (3.9a)

V 5 # d 3 -
X ® # d 3 -

X exp( 2 2
-

X 2/L2
M) 5 ( p /2)3/2L2

M (3.9b)

# dx0 ® # dx0 exp( 2 2(x0/ t J)
2) 5 ( p /2)1/2 t J (3.9c)

where t 0 is a large relative time scale of the quarks and LM a large cutoff length.

With (3.9), the action (5.1) below is neither Lorentz nor gauge invariant; valid

results are obtained only for large values of these parameters. This ansatz

leads to the gauge boson mass (II 5.2b),
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M 2
W 5

p ! p
4

g2Nc00 t 0 5 (80.33 GeV)2 (3.10)

where g is the weak charge in (II 2.3d) and the relative energy v 0 ® 0 in
(II 2.9) and (II 3.2), as is suggested below (5.2). A factor of 1/ ! 8 has been

introduced into (3.10), according to (9.2) of ref. 11. However, no such integral

over x0 is present in the normalization condition (II 7.3), the equivalent of

(3.6) and (II 7.4),

Ne 5 4 p Nc00E00 V (3.11)

which is equivalent to Nm0 of (3.7) and hence is equal to iE00. Application

of this result to (II 6.5) would lead to a decay rate in disagreement with data.

These difficulties, not realized as such in Section 7 of II, are removed

by introducing the t 0 factor in (3.9a) and (3.9c) into (II 2.8) and integrating
the so-modified (II 7.3) over x0. Equations (II 7.4) and (3.11) are now altered to

Nd 5 4 p ! p /2Nc00 t 0E00 V 5 4M 2
WE00 V /g2 (3.12)

where (3.10) has been consulted.

Now Nd is a large, dimensionless Lorentz scalar and thus cannot depend
linearly upon a time component of a four-vector like E00. The decay volume

V in (3.11) and (3.12) is a representation of a d -function, like that in (7.3b)

below. Combining (3.12), (3.10), and (II 6.4) leads to the decay rate

G (K+, p + ® m + n ) 5 8 ! 2
NdG

3m2
m

p 4L6
ME00 1 1 2 1 m m

E00 2
2

2
2

(3.13)

which replaces (II 6.5) and (II 10.4). The prediction of the ratio of the K

and p weak decay rates in II, without introducing any Cabbibo angle, remains

unchanged by (3.13), which is finite if

Nd 5 M 6
ML6

M (3.14)

where MdW is some mass scale of the order of 1.4 Gev. As was pointed out

below (II 11.5), the pion decay constant F cos u c there is essentially the ratio

between two large constants Nd and L6
M.

Similarly, the relative time scale t 0 } M 2
W V according to (3.10), (2.1d),

(2.2a), and (2.3a). Conversely, M 2
W is basically the ratio of two large quantities,

t 0 and V . Also, Nf of (II B6) is, like Nd , a large Lorentz scalar } L6
M. For

free mesons, however, the amplitude Ad in (II B6) is of the type (2.3), so

that Nf } L3
M.
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4. CONSTRUCTION OF QUSAI-FOUR-QUARK MESON
EQUATIONS

In the simplest OZI rule obeying decay of a vector meson into two
pseudoscalar mesons, four quarks are involved; quark A of flavor p and

antiquark B of flavor r forming the two-quark vector meson and a pair

comprising quark C of flavor q and antiquark D of flavor q created from the

vacuum and considered as perturbation initially. The vector meson AB decays

into the two pseudoscalar mesons AD and CB or AB and CD.

The method of construction of the two-quark vector meson given in the
Appendix is extended to apply to the four-quark case under the following

restricted conditions. The wave functions for the quark C and antiquark D
are the same as those in (A1) and (A2), except for the labels and I ® III

and II ® IV for the designation of new coordinates for C and D. Consider

the case that the C and D amplitudes are small relative to those for the quarks
A and B and that the quarks A (B) and C (D) are close to each other so that

xIII ’ xI, zIII ’ zI, xIV ’ xII, and zIV ’ zII. In this region, one may consider that

the wave function for quark A is augmented by a perturbed wave function

of quark C according to

x AbÇ (xI) j p
A(zI) 1 x CbÇ (xI) j

q
C(zI), c b

A(xI) j p
A(zI) 1 c b

C(xI) j
q
C(zI) (4.1)

A similar set holds for the antiquarks B and D. Instead of two separate quarks,

they are considered as a mixed state so that the genuine four-quark problem
is reduced to a tractable two-quark one.

Equations (A1)±(A3) generalized to the four-quark case now read

- abÇ
I ( x AbÇ (xI) j p

A(zI) 1 x CbÇ (xI) j
q
C(zI))

5 i(mAop(zI, - / - zI) 2 VBD(xI))( c b
A(xI) j p

A(zI) 1 c b
C (xI) j

q
C(zI)) (4.2a)

- IcÇ b( c b
A(xI) j p

A(zI) 1 c b
C (xI) j

q
C(zI))

5 i(mAop(zI, - / - zI) 1 VBD(xI))( x AcÇ (xI) j p
A(zI) 1 x CcÇ (xI) j

q
C(zI)) (4.2b)

- IIeÇ f ( x f
B(xII) j Br(zII) 1 x f

D(xII) j Dq(zII))

5 i(mBop(zII, - / - zII) 2 VAC(xII))( c BeÇ (xII) j Br(zII) 1 c DeÇ (xII) j Dq(zII)) (4.3a)

- deÇ
II ( c BeÇ (xII) j Br(zII) 1 c DeÇ (xII) j Dq(zII))

5 i(mBop(zII, - / - zII) 1 VAC (xII))( x d
B(xII) j Br(zII) 1 x d

D(xII) j Dq(zII)) (4.3b)

MIVBD(xI) 5
i

4
g2

q[( c b
B(xI) 1 c b

D(xI))( x Bb(xI) 1 x Db(xI)) 2 c.c.] (4.4a)

MIIVAC(xII) 5
i

4
g2

q[( c a
A(xII) 1 c a

C(xII))( x Aa(xII) 1 x Ca(xII)) 2 c.c.] (4.4b)
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We follow the procedure in the Appendix and multiply together (4.2a) and

(4.3a). This leads to a equation similar to (A4), but with four product wave

functions on each side instead of one as in (A4). Each of the resulting products
is generalized to a nonseparable meson wave function, distinguished from

each other by the subscripts AB, AD, CB, and CD, or to internal operators

in the same way as in (A5) and (A6). Since only three mesons are involved

in V ® PP, one of the four product meson wave functions is dropped. This

can be represented by dropping CD, the created qq pair, so that (i) AB ®
AD 1 CB; D* 1 ® D0 p + is an example. Alternatively, (ii) AB ® AB 1 CD;
D* 1 ® D+ p 0 provides an example. In the following, only (i) will be consid-

ered. The interchange D % B among the decay products turns this case to

(ii), which will be applied. The resulting meson equation corresponding to

(A7a) reads

- abÇ
I - IIeÇ f ( x f

ABbÇ (xI, xII) j p
r(zI, zII) 1 x f

ADbÇ (xI, xII) j p
q(zI, zII) 1 x f

CBbÇ (xI, xII) j q
r(zI, zII))

5 ( F P4(xI, xII) 2 m2op) F c a
ABeÇ (xI, xII) j p

r(zI, zII) 1
c a

ADeÇ (xI, xII) j p
q(zI, zII) 1 c a

CBeÇ (xI, xII) j q
r (zI, zII)G

(4.5a)

where F P4 is defined in (4.6a) below. Multiplying together (4.2b) and (4.3b)

and following the same procedure gives

- IcbÇ - deÇ
II ( c b

ABeÇ (xI, xII) j p
r(zI, zII) 1 c b

ADeÇ (xI, xII) j p
q(zI, zII) 1 c b

CBeÇ (xI, xII) j q
r(zI, zII))

5 ( F P4(xI, xII) 2 m2op) F x d
ABcÇ (xI, xII) j p

r (zI, zII) 1
x d

ADcÇ (xI, xII) j p
q(zI, zII) 1 x d

CBcÇ (xI, xII) j q
r(zI, zII)G

(4.5b)

Multiplying together (4.4a) and (4.4b) and following the same procedure

leading to (A9) leads to

2 VBD(xI)VAC(xII) ® F P4 5 F PAB 1 F 1P4 (4.6a)

MIMII F PAB(xI, xII) 5 1±8 Re( c a
ABbÇ (xII, xI) x bÇ

ABa(xII, xI)) (4.6b)

MIMII F 1P4(xI, xII) (4.6c)

5
1

16 3
c a

ADbÇ (xII, xI) x bÇ
CBa(xII, xI) 1 c a

CBbÇ (xII, xI) x bÇ
ADa(xII, xI) 1

c a
CBbÇ (xII, xI) x bÇ

CBa(xII, xI) 1 c a
ADbÇ (xII, xI) x bÇ

ADa(xII, xI) 1
c a

ABbÇ (xII, xI) x bÇ
CBa(xII, xI) 1 c a

CBbÇ (xII, xI) x bÇ
ABa(xII, xI) 1

c a
ABbÇ (xII, xI) x bÇ

ADa(xII, xI) 1 c a
ADbÇ (xII, xI) x bÇ

ABa(xII, xI) 4 1 c.c.

Multiplying (4.5a) and (4.5b) by j r
p(zI, zII), j q

p(zI, zII), and j r
q(zI, zII) and making

use of (III A5) and (III A9) leads to
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- abÇ
I - IIeÇ f x f

ABbÇ (xI, xII) 5 ( F P4(xI, xII) 2 M 2
AB) c a

ABeÇ (xI, xII) (4.7a)

- IcÇ b - deÇ
II c b

ABeÇ (xI, xII) 5 ( F P4(xI, xII) 2 M 2
AB) x d

ABcÇ (xI, xII) (4.7b)

(4.7) with AB ® AD (4.8)

(4.7) with AB ® CB (4.9)

where (A7b) and (A7c) have been employed with MAB 5 Mm. All other

product equations vanish in the same manner as the corresponding ones do

in the Appendix.

Equations (4.6)±(4.9) form a set of seven equations for the seven vari-
ables c AB, x AB, AB ® AD, AB ® CB, and F P4. The various meson wave

functions for AB, AD, and CB are coupled strongly in F P4 of (4.6), and

contain new and strong interactions not present in the two-quark meson

equations (A7)±(A9).

Equations (4.6b) and (4.7a) are of zeroth order and account for the

vector meson AB. Equations (4.8)±(4.9) and the first two terms on the right
of (4.6c) are of higher order. They describe the decay products AD and CB.

5. ACTION FOR V ® PP DECAY AND DECAY AMPLITUDE

Equation (4.7) is converted into the form of an action (III A4) or (5.1)

of ref. 8 with some of the symbols changed;

SM 5 # d 4xI d 4xII
1

4 H ( - bÇ a
I x eÇ

ABa)( - IIeÇ f x f
ABbÇ ) 1 ( - bÇ a

II c eÇ
ABa)( - IeÇ f c f

ABbÇ ) 1 c.c

1 2( F P4 2 M 2
AB)( c cÇ

ABd x d
ABcÇ 1 c.c.) J (5.1)

This action is entirely similar to the actions (III 2.1) for the radiative decay

V ® P g and (II 2.4) for the weak decay K ® m n and will be treated in an
analogous manner. Laboratory coordinate X and relative coordinate x are

introduced in (III A3a).

The vector meson wave function is written as a special case of (III 3.1),

c abÇ
AB(xI, xII) 5 (a

(0)
AB 1 a

(1)
AB(X 0))[exp( 2 iE10 X 0)]( 2

-
s abÇ -

c 10(
-

x )) (5.2a)

(5.2a) with c ® x (5.2b)

The relative energy v JK 5 0 has been set in (5.2) for similar reasons as those

given above (III 4.2). The annihilation operator and initial and final states

are defined, as in (II 4.3), by

a
(0)
AB exp( 2 iE10 X 0) ® aAB, ) i & 5 ) VAB &

aAB ) VAB & 5 ) 0 & , ^ f | 5 ^ 0 ) (5.3)
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a
(1)
AB(X 0) is a first-order quantity varying slowly with the time X 0 and character-

izes the decay of VAB, the vector meson AB.

Equation (5.1) is thus divided into a zeroth-order part, accounting for
VAB at rest, and a perturbational part consisting of terms of type (i) and type

(ii), as in III Section 2. The type (i) terms are linear in a
(1)
AB(X 0) and type (ii)

terms are linear in the perturbed potential F 1P4 of (4.6c).

The treatment of type (i) terms proceeds in the same way as in III

Section 3 and II Section 4 with the modifications indicated in (5.2) and (5.3).

Sandwiching these terms between ^ f ) and ) i & leads to the equivalent of (III
3.5) or (II 4.4),

2 i
1

2
E10 Sfi V N # d 4x ) -

c 10(
-

x ) ) 2, V N 5 # d 3 -
X (5.4a)

Sfi 5 ^ 0 ) a(1)
AB( ` )(exp(iE10 ` ))aAB ) VAB & 5 a

(1)
AB( ` )(exp(iE10 ` )) (5.4b)

Sandwiching the type (ii) terms in (5.1) between ^ f ) and ) i & and making use

of (5.2) and (5.3) and (III A3a) leads to

2 # d 4X d 4x F 1P4(exp(iE10 X 0)) ) -
c 10(

-
x ) ) 2 (5.5)

Equating (5.4a) to the negative of (5.5) yields the decay amplitude

Sfi 5

2 i
4

E10 V N # d 4X d 3 -
x F 1P4(exp(iE10 X 0)) )

-
c 10(

-
x ) ) 2 Y # d 3 -

x )
-

c 10(
-

x ) ) 2 (5.6)

6. PHYSICAL PICTURE AND PERTURBED POTENTIAL

The solution to the zeroth-order potential F PAB of (4.6b) has been given

by (2.1b) with J, n 5 1, 0 and F 8PJ0, em 5 0, according to Section 2.1 and

the discussion above it. A perturbational treatment holds if in (4.6)

) F 1P4 ) ¿ ) F PAB ) ’ ) dm / ^ r1 & 2 F 0 ) > (0.19 1 0.24) GeV (6.1)

which will be justified below.

Only the first two source terms 1 c.c. on the right of (4.6c) will contribute
to F 1P4. These terms are associated with the decay products AD and CB
having a total energy E10 in (5.6); the remaining terms will drop out upon

integration over X 0 because they are associated with total energies differing

from E10.
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6.1. Physical Picture

In the rest frame of the vector meson AB, c 1(r) 5 ) -
c 10(r) ) in (III 3.6)

and (5.2a) is given by (2.2b) and (2.3b) and is evenly distributed in a large

volume V with vanishing amplitude A1. A virtual quark±antiquark pair CD

is initially created in AB. To be specific, let BA ® uÅ c and DC ® dd and

choose alternative (ii) above (4.5a) to represent D*0 ® D0 p 0. This initial

stage is illustrated in Fig. 1a. The c and d quarks are about 6 fm apart

according to (2.6b), much greater than the d±d distance. Therefore, (4.1)
does not apply; a genuine four-quark theory would be required. However,

the source terms corresponding to those on the right of (4.6c) in such a

theory are also small at this stage because the d and d wave functions

are perturbations. Therefore, the condition corresponding to (6.1) holds at

this stage.

The initial stage is followed by the intermediary stage of Fig. 1b. In
Fig. 1 of III for D*0 ® D0 g , the c and uÅ quarks move inward and one of

them flips its spin to form a D0, the energy released goes to the photon

and D0. Analogously, the c and uÅ quarks in Fig. 1a behave in the same

way to form a D0, the energy released now goes, in addition to D0, also

to create a distance between the d and d quarks in Fig. 1a and converts
this virtual pair into a real meson in the end. In this intermediary stage,

xIII (xI) is considered to be close enough to xIV(xII ) so that the approximation

(4.1) applies.

In this stage, both embryo pseudoscalar mesons interact strongly with

each other and the meson wave functions are not uniformly distributed in X
space. This stage is too complex to allow for an estimate of the source wave
functions. It is not known whether (6.1) is violated or not. However, the

effect of an eventual violation is small because this stage lasts a very short

time compared to the duration of the final stage below, so that its contribution

to the time integral of (5.6) is small.

Since diquarks do not exist, c and d tend to move away from each other.

This leads to the final stage, depicted in Fig 1c. Both pseudoscalar mesons
D0 and dd are moving away from each other. The same process holds for dd
® uÅ u and a p 0 is observed (see note a in Table 4 of ref. 9). After a

short time, small compared to the decay time Td in (7.2), the so-produced

pseudoscalar mesons have moved so far away from each other that they no

longer interact with each other via strong forces and can hence be considered

as free mesons.
The absolute magnitude of their amplitudes according to (2.2a) and

(2.3a) is proportinal to 1/ ! V ® 0, so that (4.6c) is small and (6.1) holds.

But in this stage the quarks uÅ (c) and d (d ) are so far apart that (4.1) and

hence (4.6c) are no longer valid. Nevertheless, it is possible to set
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Fig. 1. Illustration of D*0 ® D0 p 0. (a) In the initial stage the peak of the free D*0 amplitude

is located on the circle according to (2.6b) and a virtual pair dd with small amplitude is created

at the origin. The c and uÅ quarks tend to lower their energy in the potential well 2 dm /r of

(2.1b) by moving toward each other to form the final state pseudoscalar meson D0, which has

a much smaller radius and hence much lower potential energy. (b) In the intermediary stage

the c and uÅ quarks have moved inward and the potential energy released goes to compensate

for the energy needed to create a separation of d from d in order to form a quasi-dd pseudoscalar

meson. The spin of c or uÅ flips to convert D*0 to D0. Also, the quarks uÅ (c) and d(d ) start to

move away from each other since the diquark does not exist. With dd ® uÅ u in half of the

time, it becomes a p 0. This process continues until it reaches the final stage (c), in which D0

and p 0 become free mesons.
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X 3 5 1±2 (x3
I 1 x3

II) 5 2 1±2 (x3
III 1 x3

IV), X 0 5 1±2 (x0
I 1 x0

II) 5 1±2 (x0
III 1 x0

IV)
-
x 5

-
x II 2

-
x I 5

-
x IV 2

-
x III (6.2)

where the superscript 3 denotes the direction of the meson velocity. This is
possible because of (i) the symmetry in the motions of the quarks in both

mesons, (ii) the flavor independence of nonrelativistic free meson wave

functions, and (iii) the fact that the wave functions are finally integrated over

x and X in (5.6).

The spin of the D*0 is transferred to a relative angular momentum
between both pseudoscalar mesons. Formally, this can be seen by applying

(III 3.6) to the upper integrand of (5.6) to obtain

c I(r) ë 2rÃF 1P4(exp(iEI0X 0)) û rÃc I(r)

Here, the last rÃrepresents the vector character of the initial state and the first

rÃdenotes the spin state of the both pseudoscalar mesons, represented by the

bracket using (6.5) and (6.9) below.

6.2. Perturbed Potential

The negative-energy solutions for the pseudoscalar meson CB in motion

are chosen in (4.6c). The terms on the right of (4.6c) that will contribute in
the final stage (Fig. 1c) are written as

2
1

16
( c abÇ

AB x *CBbÇ a 1 c *abÇ
CD x ADbÇ a)

2
1

16
exp[i(

-
K 0AD 2

-
K 0CB)

-
X 2 i(E0

-
K AD 1 E0

-
K CB)X 0]

3 2( c 0
-

K AD(
-

x ) x *
0

-
K CB(

-
x ) 2

-
c 0

-
K AD(

-
x )

-
x *

0
-

K CB(
-

x ) 1 c % x ) (6.3)

where the form of (III 3.1) with bJK 5 1 has been employed. Comparison

of (5.4b) to (5.6) together with (4.6c) and (6.3) shows that

-
K 0AD 5

-
K 0CB 5

-
K 0 (6.4)

Replacing the right of (4.6c) by (6.3) and using (III A3) with a 5 1/2 given

above (III 4.2) leads to the form

F 1P4(xI, xII) 5 F 1P(
-

x ) exp[i(
-

K 0AD 2
-

K 0CB)
-

X 2 i(E0
-

K AD 1 E0
-

K CB)X 0] (6.5)

Using this expression, the left of (4.6c) similarly becomes
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{exp[i(
-

K 0AD 2
-

K 0CB)
-

X 2 iE10 X 0]} 1 ¹ 2 1
E 2

10

4 2
2

F 1P(
-

x ) (6.6a)

E10 5 E0
-

K AD 1 E0
-

K CB (6.6b)

The last relation is evident from (5.4b), (5.6) and (6.5).

6.3. Green’s Functions

Equating (6.6a) to (6.3) yields

1 ¹ 2 1
E 2

10

4 2
2

F 1P(
-

x ) 5 2
1

8 1 c 0
-

K AD(
-

x ) x *0
-

K CB(
-

x ) 2
-

c 0
-

K AD(
-

x )
-

x *0
-

K CB(
-

x ) 1
x *0

-
K AD(

-
x ) c 0

-
K CB(

-
x ) 2

-
x *0

-
K AD(

-
x )

-
c 0

-
K CB(

-
x ) 2

(6.7)

The Green’ s function for (6.7) satisfies

1 ¹ 2 1
E 2

10

4 2
2

G(
-

x ,
-
x 8) 5 d (

-
x 2

-
x 8) (6.8a)

G(
-

x ,
-

x 8) 5 2
1

4 p E10

sin 1 1

2
E10 ) -

x 2
-

x 8 ) 2 (6.8b)

In the E10 ® 0 limit, (6.8b) reduces to

G(
-

x ,
-

x 8) 5 2 ) -
x 2

-
x 8 ) /8 p (6.8c)

which is the confining Green’ s function of (I 7.1) for the zeroth-order F PAB

of (4.6b). Note that homogeneous solutions of the type 1/ ) x 2 x8 ) and constant

that accompany (6.8c), as in (I 7.2), cannot be added to (6.8b) due to the
presence of E10. Applying (6.8a) and (6.8b) to (6.7) yields

I1P(
-

x ) 5 8 p E10 F 1P(
-

x )

5
1

4 # d 3x8 F c 0
-

K AD(
-

x 8) x *0
-

K CB(
-

x 8) 2
-

c 0
-

K AD(
-

x 8)
-

x *0
-

K CB(
-

x 8) 1
x *0

-
K AD(

-
x 8) c 0

-
K CB(

-
x 8) 2

-
x *0

-
K AD(

-
x 8)

-
c 0

-
K CB(

-
x 8) G

sin 1 1

2
E10 )

-
x 2

-
x 8 ) 2 (6.9)

For nonrelativistic mesons, vector product terms in (6.9) are of order
e 2

0 and can be dropped. The bracket in (6.9) then depends only upon ) x8 ) 5
r8 and angular integrations can be carried out to yield
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I1P(r) 5
8 p
E 3

10 5
cosR

R #
R

0

dR8 R8(sin R8 2 R8 cos R8) [. . . (r8)] 1

sin R #
R

0

dR8 R8[. . .(r8)] sin R8 2

cos R #
`

R

dR8 R8[. . .(r8)] cos R8 1

sin R

R #
`

R

dR8 R8(cos R8 1 R8 sin R8)[. . .(r8)] 6 (6.10a)

R 5 E10r/2, [. . .(r8)] 5 [. . .] in (6.9) (6.10b)

In the E10 ® 0 limit, sin(E10 ) x 2 x8 ) /2) ® E10 ) x 2 x8 ) /2 and (6.9) takes the

form of (I 7.2) for the zeroth-order potential F PAB. In that limit, (6.10) reduces

to the form of the bracket in (I 7.4) or (3d) of ref. 9 times E10/2 for the

confining potential.

7. DECAY RATE

Inserting (6.9) and (6.5) into (5.6) and performing the X 0 integration
yields

Sfi 5
2 i

E 2
10 V N # d 3 -

X (exp i(
-

K 0AD 2
-

K 0CB)
-

X ) d (E10 2 E0
-

K AD 2 E0
-

K CB)

3 # d 3 -
x c 2

1(r) Re I1P(
-

x ) Y # d 3 -
x c 2

1(r) (7.1)

Here, (III 3.6) has been used. The decay rate corresponding to (III 4.3) is

G (V ® PP) 5 (
final states

) Sfi ) 2/Td 5
V 2

N

64 p 6 # d 3 -
K 0AD # d 3 -

K 0CB ) Sfi ) 2/Td

(7.2)

Inserting (7.1) into (7.2) and carrying out the X integration in a manner

analogous to that leading to (III 4.3) gives

G (V ® PP) 5
1

4 p 3

V d

V 2
N

( V NI1P)2C 2
gPK (7.3a)

V d 5 # d 3 -
X (exp i(

-
K 0AD 2

-
K 0CB)

-
X ) 5 8 p 3 d (

-
K 0AD 2

-
K 0CB) 5 (2 p d (0))3

(7.3b)
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PK 5 E 2 5
10 K0 ! E 2

00AD 1 K 2
0 ! E 2

00CB 1 K 2
0, K0 5 ! l /2E10 (7.3c)

l 5 E 4
10 1 E 4

00AD 1 E 4
00CB 2 2E 2

10(E
2
00AD 1 E 2

00CB) 2 2E 2
00ADE 2

00CB

(7.3d)

I1P 5 # d 3 -
x c 2

1(r) Re I1P(
-

x ) Y # d 3 -
x c 2

1(r) (7.4)

where K0 5 ) K0 ) of (6.4). Since the decay is strong, the branching ratio

determined by the isospin Clebsch±Gordan coefficient Cg has been inserted.

The E00 are the masses of the pseudoscalar mesons AD and CB deter-

mined by (2.1e). The relation (III B10), shown to hold to order e 0, has been

used in deriving (7.3c), (7.3d).

As was mentioned in Section 6.1 in connection with Fig. 1b, the time
during which the four quarks are close together is short compared to the

decay time Td. During the greater part of Td , the mesons have moved so far

from each other that they behave like free mesons. Limiting consideration

to nonrelativistic mesons or e 0 ¿ 1, as in (III B5), they can be described by

the rest-frame free meson wave function (2.2a) and (2.3a), putting V to V N

by (5.4a). Inserting these expressions into (7.4) using (6.9) and (2.2b) leads to

V NI1P 5 g4
q(1 1 D 2)IVP (7.5a)

IVP 5 2
d 3

m

16 # d 3 -
x r 2 exp 1 2 dmr

2 2 # d 3 -
x 8 sin 1 1

2
E10 )

-
x 2

-
x 8 ) 2

3 exp( 2 dmr8) Y # d 3 -
x r 2 exp 1 2 dmr

2 2
5

1

4 1 b

1 1 4b2 2
3 F 16

243
(1 1 10b2) 2

32b6

(1 1 b2)5

3 (2 2 11b2 2 40b4 1 21b6)G , b 5
dm

E10

(7.5b)

where (6.10) has been employed.

The g2
q factors in (A3) have been absorbed into the meson wave function

by (A5a) or (I 6.11) so that they are not visible in (A9). This scale change

makes no difference in linear problems, but plays an essential role in the

nonlinear problem here. Therefore, this g2
q factor is reinstated so that g4

q is
multiplied into the right of (A9) so that it takes the original form (I 4.12).

This g4
q factor now appears in (7.5a).

The D 2 in (7.5a) represents the e 2
0 terms in (6.9). This relativistic correc-

tion term cannot be evaluated because (III B8)±(III B9) have not been solved.
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Its order of magnitude has, however, been estimated using dimensional analy-

sis and is given by (III B14) and (III B17) in the heavy meson limit. In this

approximation, no new integrals are involved and

D 2 5 K2
0 1 1

E00ADE00CB

2
8

dm 2 , e 0
¿ 1, dm

¿ E00 (7.6)

The infrared cutoffs V d and V 2
N are also not known, but

V d / V 2
N 5 M 3

ds (7.7)

must be some finite constant to obtain a finite decay rate, just like in the

weak decay case (3.14). Such ratios of two large quantities, each approaching

infinity, are a particular feature of the spinor strong interaction theory and

their roles are not understood presently.

The decay rate (7.3a) now becomes

G (V ® PP) 5 C1C
2
gPkI

2
VP(1 1 D 2)

2, C1 5 g8
qM

3
ds /4 p 3 (7.8)

which together with (7.3c), (7.3d) and (7.5b) determines the decay rate for
nonrelativistic decay products.

8. APPLICATION AND COMPARISON TO EARLIER WORK

8.1. V ® PP Decay Rates

The decay rate (7.8) can now be applied to the various decays in Table

I. It holds for e 0 ¿ 1, so that D 2 ¿ 1 and can be neglected. The condition

for the estimate of D 2 by (7.6) is not met by the decays in Table I except
for D*. The predicted decay rates are obtained by putting D 2 to 0. Futher,

C1 in (7.8) is fixed by the measured G ( w ® K+K 2 ) and is C1 5 0.35 GeV3.

Since e 0 is not very small according to Table I, the D 2 term for this decay

may cause an error of 10±20% in this C1 value.

For D*, e 0 ¿ 1, so that the predictions are expected to hold rather well.

Since (7.6) holds for this decay, it reduces the rates by 2±2.6%. Data [1]
show that G (D* 1 ® D0 p +)/ G (D* 1 ® D+ p 0) 5 2.23 6 0.28. This value is

11.6% greater than the ratio 2 obtained from the Clebsch±Gordan coefficients.

In Table I this ratio 2 is raised to 2.13, within experimental error. The very

small decay rates are due to the canceling effect of the sine factor in (7.5b)

and are far below the measured upper limits. An experimental determination

of these rates can provide an important test for the spinor strong interac-
tion theory.

For K* and r , e 0 is no longer small and the D 2 term will be appreciable.

Nevertheless, the predicted values are off only by a factor of about 2 and

support qualitatively the present approach to strong decays.
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Table I. Decay Rates and Parameters Limiting Their Validity Regionsa

G (keV)

e 0 5 K0 /E00 e 2
0 C 2

g (7.8) Data[1]

D* 1 ® D+ p 0 0.021 (D) 0.00596 1/3 0.012 , 40

0.284 ( p )

D* 1 ® D0 p + 0.021 (D) 0.00596 2/3 0.025 , 89.5

0.284 ( p )

D*0 ® D0 p 0 0.023 (D) 0.00736 1/3 0.013 , 1300

0.32 ( p )

D*0 ® D+ p 2
0.023 (D) 0.00736 2/3 0 0

0.32 ( p )

w ® K+K
2

0.257 0.066 1/2 Input 2.18 3 103

w ® KÅ 0K0 0.221 0.0488 1/2 1.89 3 103 1.51 3 103

K* 1 ® K+ p 0 0.586 (K) 1.26 1/3

2.14 ( p )

25.2 3 103 49.8 3 103

K* 1 ® K0 p + 0.574 (K) 1.17 2/3

2.05 ( p )

K*0 ® K0 p 0 0.583 (K) 1.25 2/3

2.15 ( p )

24.8 3 103 50.5 3 103

K*0 ® K+ p 2
0.59 (K) 1.23 1/3

2.09 ( p )

r + ® p + p 0 ’ 2.6 6.91 1

62.5 3 103 151 3 103

r 0 ® p + p 2 2.61 6.81 1

a Column 2 gives the relative momenta of the decay products. Column 3 shows the product

of the e 0’ s in column 2 for both decay products and is a measure of D 2 in (7.8). The isospin

Clebsch±Gordan coefficient factor in (7.8) is given in column 4 and the data [1] in column

6. The decay rates in column 5 are obtained from (7.8) with (7.5b), (7.3c), and (7.3d), putting

D 2 5 0, and hold only for e 0 ¿ 1. For K* and r , e 0 À 1 and D 2 Þ 0, so that the decay

rates are only estimates.

8.2. Ratios of V ® P g and V ® P p 0 Decay Rates

The results in Table I may be combined with the order-of-magnitude

estimates of the radiative decay rates in Table 1 of III. Some results are

shown in Table II.

The estimated ratios are consistent with the measured ones, given that

G (V ® P g ) is an order-of-magnitude estimate and that G (V ® P p 0) is also
an estimate due to the unknown D 2, except for D*. The too large estimates

for r stem from the too large G ( r ® p g ) in Table I of III and are discussed

at the end of Section 5.1 of III. On the other hand, the order-of-magnitude

agreement for the D* case is rather remarkable in view of the very small
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Table II. Ratios of Radiative and Strong Decay Ratesa

G (D*0 ® D0 g )

G (D*0 ® D0 p 0)

G (D*+ ® D+ g )

G (D*+ ® D+ p 0)

G (K*0 ® K0 g )

G (K*0 ® K0 p 0)

G (K*+ ® K+ g )

G (K*+ ® K+ p 0)

G ( r + ® p + g )

G ( r + ® p + p 0)

Estimate 0.21 0.015 3.23 3 10 2 3 $ 1.72 3 10 2 3 . 2.2 3 10 2 3

, 17.2 3 10
2 3 # 22 3 10

2 3

Data [1] 0.615 0.036 3.45 3 10 2 3 3.03 3 10 2 3 0.9 3 10 2 3

a The estimated values are ratios of the order-of-magni tude estimates of G (V ® P g ) of Table

I in III to the predicted G in Table I here. The last line gives the experimental data, using

the Clebsch ±Gordan coefficients in Table I.

G (D*) values in Table I and of the rather coarse estimate of (4.8) and (4.10a)

of III.

8.3. Comparison to Earlier Work

The present work differs basically from earlier ones [3±6] which were

based upon phenomenological Lagrangians (not derivable from first-principle

theories such as QCD). These consist of local meson fields and the physics
related to the finite size of the mesons is largely lost. These Lagrangians

have been constructed for different applications, are different from each other,

and often contain a large number of terms and many free parameters to be

fixed by nearly as many data points. They cannot account for more general

mesonic phenomena such as confinement, meson spectra, the U(1) problem,

the absence of Higgs bosons, etc.
The chiral perturbation theories and the decay rates obtained from them

hold approximatively for light mesons [3, 4]. When the meson contains a

quark with mass ® ` , a new spin-flavor symmetry appears in QCD [5].

G (D* 1 ® D0 p +) has been estimated in this heavy quark symmetry limit [6].

However, correction due to the finite c quark mass, which can be appreciable,

has not been included and the predicted rates depend upon the data chosen
to fix the parameters.

In contrast, the Lagrangian in (5.1) is Lorentz and gauge invariant. It

is nonlocal, contains the internal structure of the mesons, and is much simpler

than the phenomenological Lagrangians. The same Lagrangian also led to

predictions on confinement (I), meson spectra [9], the U(1) problem [8], the

absence of Higgs bosons [8], weak decay (II), and radiative decay (III), if
appropriate gauge fields are incorporated.

In the nonrelativistic limit, D 2 5 0 in (7.8). The only free parameter is

C1, which is fixed by G ( w ® K+K 2 ). The fundamental mesonic length 1/dm

in (2.5a) was determined in I.
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9. POSSIBLE CONNECTION OF STRONG TO
ELECTROMAGNETIC INTERACTIONS AND FORMAL
DECOUPLING OF ELECTROMAGNETIC AND WEAK
INTERACTIONS

9.1. Possible Connection of Strong and Electromagnetic Interactions

The radiative and strong decay rates of D* in Table II are of the same

order of magnitude. The phase spaces available for both types of decay are

very small due to the small difference of D* and D masses. Next to D, p 0

and g are both light particles. These observations may indicate that both

types of decay are associated with the same coupling strength.

This can also be seen from the similarity between Fig. 1 of III and Fig.
1 here. As was discussed in Section 6.1, the initial stage of both decays is

the same, i.e., the inward motion of both quarks in the vector meson. A

photon is emitted in the radiative decay, but is reabsorbed by a virtual qq
pair to form a real qq meson to be emitted in the corresponding strong decay.

Each type of decay is characterized by its coupling strength. The coupling

strength of the weak decay rate (II 6.5) or (3.13) is determined by the Fermi
coupling constant

G 5 ! 2 g2/8M 2
W (9.1)

according (II 6.4), where MW is the gauge boson mass and g the weak charge.

The coupling strength of the electromagnetic or radiative decay rate (III 4.3)

is the fine structure constant a in form of the square of the quark charges.

The coupling strength of the strong decay rate (7.8) is g8
q. The M 3

ds factor

there, given by (7.7), is of basic importance in strong decay, but is not related

to the quark±quark coupling constant g2
q in (A3).

Therefore, it may be conjectured that the strong and electromagnetic

couplings are connected to each other by relating the strong meson±meson

coupling constant g8
q in (7.8) to the electromagnetic one, the fine structure

constant a , in the radiative decay rate (III 4.3) according to

(g2
q /4 p )4 [ a 4

s 5 a [ e2/4 p > 1/137 (9.2a)

a s 5 ( 6 1, 6 i) 3 0.2923 (9.2b)

gq 5 ( 6 1, 6 i, 6 (1 6 i)/ ! 2) 5 6.328e (9.3)

A factor of 1/(4 p )3 has been absorbed into the M 3
ds /4 p 3 factor in C1 in (7.8).

It is seen that a s is of the same magnitude that appears in the literature,
but can be imaginary here. The hypothesis (9.2) may eliminate one more

ª fundamental parameterº a s , in the literature [1], in addition to the Cabbibo

angle (II 11.4) in the meson sector and the Weinberg angle [see (9.5) ff.] in

the limit of SU(3) flavor symmnetry. Such a connection (9.3) has in addition
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the cosequence that the existence of the electron implies that the quark or

hadron also exists.

9.2. Detachment of Electromagnetic and Weak Couplings

Independent of the above connection in Section 9.1, such a detachment

is already implicit in Section 3.4, which will be made explicit here. In the

standard electroweak model [1], the strength of the weak processes is con-

trolled by the Fermi constant (9.1), where the weak charge g is related to
the electron charge 2 e via the Weinberg angle,

sin q w 5 e/g > 1/2 (9.4)

which in effect couples the electromagnetic and weak interactions.

In the spinor strong interaction theory, however, G is independent of g,
hence also e, according to (9.1) and (3.10):

G 5 1/ p ! 2 p Nc00 t 0 5 2 ! 2/ p V / t 0 (9.5)

The last relation is obtained from (2.1d), (2.2a), and (2.3a) and shows that

the Fermi constant is the ratio of two large parameters, each ® ` , but at
different rates, just like Mds in (3.14) and MdW in (7.7) do.

Further, the Weinberg angle in (9.4) has, in the limit of SU(3) flavor

symmetry, its origin in the 1/ ! 3 factor in the eighth of the Gell-Mann matrices

according to (5.2) and what follows in ref. 11. Thus, (9.4) is related to the

nomalization of the Gell-Mann matrices and not to any physical coupling of

electromagnetic and weak interactions. From this viewpoint, the Fermi con-
stant in weak interactions is dissociated from electromagnetic interactions.

Such a detachment is not possible in the standard model because MW

in (9.1) is a constant generated by the hypothetical Higgs boson which is

unrelated to g. Since no Higgs boson has been found after decades of search,

the standard model is probably incorrect in this basic aspect. In the spinor

strong interaction theory, the low-lying pseudoscalar meson doublet and triplet
play the role of the Higgs boson [8, II] and no such difficulty exsists. As

was shown in II, the remaining main results of the standard model can be

taken over and are not affected by this decoupling.

That the strong and electromagnetic couplings are interconnected while

the electromagnetic and weak couplings are disconnected is more natural

than the current view in which the connection and disconnection are reversed.
The electromagnetic and strong interactions both conserve parity, while weak

interactions violate maximally parity conservation. Further, a is smaller than

a s by a factor of about 40 according to (9.2), but is greater than the weak

coupling constant Gm2
m by a factor of about 105.
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APPENDIX. CONSTRUCTION OF TWO-QUARK MESON
WAVE EQUATIONS

Construction of two-quark meson wave equations (I 5.4) and (I 4.12)

has been carried out in Sections 4 and 5 of I. This is repeated here to facilitate

the construction of the four-quark meson wave equations in Section 2. Some
errors in Section 4 of I, which do not affect the meson equations there, are

removed here.

Equations for a quark A and an antiquark B under mutual pseudoscalar

interaction (I 5.1), (I 5.2), and (I 4.7) read

- abÇ
I x AbÇ (xI) j p

A(zI) 5 i(mAop(zI, - / - zI) 2 VPB(xI)) c a
A(xI) j p

A(zI) (A1a)

- IcÇ b c b
A(xI) j p

A(zI) 5 i(mAop(zI, - / - zI) 1 VPB(xI)) x AcÇ (xI) j p
A(zI) (A1b)

- IIeÇ f x f
B(xII) j Br(zII) 5 i(mBop(zII, - / - zII) 2 VPA(xII)) c BeÇ (xII) j Br(zII) (A2a)

- deÇ
II c BeÇ (xII) j Br(zII) 5 i(mBop(zII, - / - zII) 1 VPA(xII)) x d

B(xII) j Br(zII) (A2b)

MI VPB(xI) 5
i

2
g2

q[ c b
B(xI) x Bb(xI) 2 c.c.] (A3a)

MII VPA(xII) 5
i

2
g2

q[ c a
A(xII) x Aa(xII) 2 c.c.] (A3b)

where x d
B 5 ( x dÇ

B)*. In (I 4.7), let

gAgB ® g2
q (A3c)

Similarly, the g’ s in (2.4) and (2.7) of ref. 15 for scalar strong interaction

among quarks are also identified as gq; there is no reason why pseudoscalar

and scalar strong quark±quark coupling should be different.
Since (A3) cannot contain any function of the internal coordinate z, the

wave function c j in (A1) and (A2) has been multiplied by j * to yield j * c j
5 c by using the reverse of (A6a) below, (III A9), and (III A5b).

Now multiply together (A1a) and (A2a):

- obÇ
I - IIeÇ f x AbÇ (xI) x f

B(xII) j p
A(zI) j Br(zII)

5 2 (mAopmBop 1 VPA(xII)VPB(xI) 2 mAopVPA(xII)

2 mBopVPB(xI)) c a
A(xI) c BeÇ (xII) j p

A(zI) j Br(zII) (A4)

The basic hypothesis of the spinor strong interaction theory for mesons

consists in the following generalizations. In the first place, the products of

quark and antiquark wave functions are generalized into nonseparable meson

wave functions according to
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g2
q x AbÇ (xI) x f

B(xII) ® x f
bÇ (xI, xII), g2

q c a
A(xI) c BeÇ (xII) ® c a

eÇ (xI, xII)

(A5a)

Next, the product of the pseudoscalar potentials for the quark A and antiquark

B is analogously generalized into a nonseparable meson potential according to

VPA(xII)VPB(xI) ® 2 F p(xI, xII) (A5b)

Consistent with these generalizations in space-time, the corresponding gener-
alizations in internal space are made:

j p
A(zI) j Br(zII) ® j p

r(zI, zII) (A6a)

mAop(zI, - / - zI)mBop(zII, - / - zII) ® m2op(zI, - / - zI, zII, - / - zII) (A6b)

Insert (A5) and (A6) into (A4). Since the quarks are not observable, their

wave functions are put to zero. Therefore, VPA 5 VPB 5 0 also by (A3).

Equation (A4) now becomes

- abÇ
I - IIeÇ f x f

bÇ (xI, xII) j p
r(zI, zII) 5 ( F P(xI, xII) 2 M 2

m) c a
eÇ (xI, xII) j p

r(zI, zII)

(A7a)

m2op(zI, - / - zI, zII, - / - zII) j p
r (zI, zII)

5 F o n m n

2 1 z n
I

-
- z n

I

1 z n
II

-
- z n

II 2 1 c.c.G 2

j p
r(zI, zII) 5 M 2

m j p
r (zI, zII) (A7b)

The internal wave function j p
r characterizes its flavor content via the quark

flavors p and r and has been given by (III A9). m2op of (A7b) is of the form

(I 9.6a) and m n is the quark mass of flavor n so that

Mm 5 1±2 (mp 1 mr) (A7c)

Multiplying together (A1b) and (A2b) and following the same procedure

leads analogously to

- IcÇ b - deÇ
II c b

eÇ (xI, xII) j p
r(zI, zII) 5 ( F P(xI, xII) 2 M 2

m) x d
cÇ (xI, xII) j p

r(zI, zII) (A8)

Multiplication of (A1a) by (A2b) and (A1b) by (A2a) leads to products of
the form x AbÇ (xI) c BeÇ (xII) and c a

A(xl) x f
B(xll), which after generalizations of the

type (A5a) transform like diquarks. Since such objects, like quarks, are not

observable, they are consistently put to zero. Observing this in the product

of (A3a) and (A3b) leads to

MIMII F P(xI, xII) 5 1±2 Re( c a
bÇ (xII, xI) x bÇ

a(xII, xI)) (A9)

where x bÇ
a 5 ( x b

aÇ )*. Multiplication of (A3) by (A1) or (A2) also leads to zero

contribution by the same reasoning as above.
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Equations (A7)±(A9) are the meson equations (I 5.4), (I 5.5), and

(I 4.12), which are manifestly Lorentz invariant by virtue of their spinor form.

Justification of these equations does not come from the above construction, but
has to come from confrontation with data. To date, such confrontations have

been somewhat limited in scope but successful in many different areas of basic

importance mentioned in the references. No major and basic contradiction to

data has so far been encountered.

The meson equations (A7)±(A9) have been converted into the action

integral (III A4) and (3.1) of ref. 8.
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